Mahara	Maharaja Ranjit Singh College of Professional Sciences, Indore				
	Department of Chemical Science				
		Ι	Lesson Plan - M. Sc. I (July 2018 - Dec 2018)		
	Subject - Inorganic Chemistry-I				
			Teacher - Prof. Seema Shintre		
	Day/Lecture	Unit	Торіс		
		1	Stereochemistry and bonding in main group compounds		
	1		VSEPR theory introduction		
	2		Rules of VSEPR theory with example		
	3		Rules of VSEPR theory with example		
	4		Rules of VSEPR theory with example		
	5		dπ-pπ bond		
	6		dπ-pπ bond		
	7		Bent rule		
	8		Walsh diagram for triatomic molecule		
	9		Walsh diagram for penta-atomic molecule		
	10		Energy of hybridisation		
			some simple reaction of covalently bonded molecule		
	11		Free radical reaction		
	12		Nucleophilic displacement reaction		
	13		Atomic inversion reaction		
	14		Barry pseudorotation reaction		
		2	Metal-Ligand Equilibria in Solution		
	15		Thermodynamic stability and kinetic stability		
	16		Stepwise formation and overall formation of complexes		
	17		Relationship between stepwise and Overall stability constants		
	18		Steric hinderance		
	19		Factors affecting the stability of metal complexes		
	20		Properties of CMI - Charge and size		
	21		Crystal field effects and natural order, Electronegativity of CMI		
			Properties of ligands- size and charge of ligand		
	22		Basic character of ligands, Chelate effect		
	23		Steric Effects and Chelate ring size		
			Experimental determination of stability constants of complex		
	24		Spectro photometric method		
	25		Potentiometric method		

	3	Reaction mechanism of transition metal complexes
26		Energy profile of a reaction
27		Inert and Labile complexes
28		Kinetic application of VBT
29		Reaction of metal complexes- Acid dissociation reaction
30		Exchange reaction: SN reaction(SN1 and SN2)
31		Electrophilic substitution reaction
32		Electron-transfer reaction
33		Types of electron transfer reactions
34		Kinetics of Octahedral substitution
35		Hydrolysis reactions- Acid hydrolysis and its factors
36		Base hydrolysis
37		Evidance in favour of SN1 conjugate base mechanism
38		Anion reaction and reaction without metal ligand bond cleavage
39		Redox reaction and Outer sphere type reaction
40		Cross reaction and Marcus Hush theory
41		Inner sphere type reactions.
	4	Metal-Ligand bonding
42		Crystal field theory
43		Limitations of CFT
44		Limitations of CFT
45		Molecular orbital theory
46		MOT for bonding in Octaheral complexes
47		MOT for bonding in Tetrahedral complexes
48		MOT for bonding in Square planar complexes
49		π bonding theory
	5	HSAB theory
50		Classification of acids and bases
51		HSAB principle
52		Lewis acid base reactivity approximation
53		Donar and acceptor numbers
54		E and C equation
55		Applications of HSAB concept

	Maharaja Ranjit Singh College of Professional Sciences, Indore			
Department of Chemical Sciences				
Lesson Plan - M. Sc. I Sem (July 2018 -Dec 2018)				
	Subject - Organic Chemistry- I			
		Teacher - Dr Dipak Sharma		
Day/Lecture	Unit	Торіс		
1	1	Nature of bonding in organic molecules, Delocalized chemical bonding		
2		Conjugation, cross conjugation		
3		Resonance, Hyperconjugation		
4		Bonding in fullerences, tautomerism		
5		Aromaticity in benzenoid and non benzoid compounds,		
6		Alternate and non alternate hydrocarbons		
7		Huckels rule, energy level of pi molecular orbitals		
8		Annulenes, anti-aromaticity, homo-aromaticity		
9		PMO approache, bonds weaker than covalent-addition compounds		
10		Crown ether complexs and cryptands		
11		Inclusion compounds		
12		Catenanes and rotaxanes		
13	2	Stereochemistry: Strain due to unavoidable crowding		
14		Elements of symmetry		
15		Chirality, molecules with more than one chiral center		
16		Threo and ertythro isomers		
17		Methods of resoluation		
18		Opetical purity		
19		Enantiotopic and diastereotopic atoms, groups and faces		
20		Stereospecific synthesis		
21		Stereoselective synthesis		
22		Asymmetric synthesis		
		Opetical activity in the absence of chiral carbon (biphenyls, allenes and		
23		spirane)		
24		Stereochemistry of the compounds containing N, S, P		

25	3	Conformational analysis and linear free energy relationship
26		Conformational analysis of cycloalkanes,
27		Decalines,
28		Effect of conformation on reactivity
29		Conformation of sugars
30		Generation, structure, stability and reactivity of carbocations
31		Carbanions
32		Free radicals
33		Carbenes and Nitrenes
34		The Hammett equation and Linear free energy relationship
35		Substituents and reaction constants
36		Taft equation
37	4	Reaction mechanism: structure and reactivity. Types of mechanisms
38		Types of reactions
39		Thermodynamic and kinetic requirements
40		Thermodynamic and kinetic requirements
41		Kinetic and thermodynamic control
42		Kinetic and thermodynamic control
43		Hammonds posttulate
44		Curtir Hammett principal
45		Potential energy diagrams, transition states and intermediates
46		Methods of determining mechanism
47		Isotopes effects
48	5	Aliphatic Nucleophilic Substitution: The SN2,
49		SN1
50		Mixed SN1 and SN2, SET mechanism
		The neighboring group mechanism, neighboring group participation by p
51		and s bonds, anchimeric assistance
52		Classical and nonclassical carbocations, phenonium ions,
53		Norbornyl systems, common carbocation rearrangements
54		Application of NMR spectroscopy in the detection of carbocations
55		Nucleophilic substituation at an allylic, aliphatic trigonal carbon
56		Nucleophilic substituation at a vinylic carbon
		Reactivity effects of substrate structure, attacking nucleophile, leaving
57		group and reaction medium
58		Phase transfer catalysis and ultrasound
59		Ambident nucleophile
60		Regioselectivity

Mahar	Maharaja Ranjit Singh College of Professional Sciences, Indore				
Department of Chemical Sciences					
Lesson Plan - M. Sc. I Sem. (July 2018 -Dec 2018)					
	Subject - Physical Chemistry Practical				
		Teacher - Prof. Deepanshu Pandey			
Day/Lecture	Unit	Tonic			
1	unit 1	Introduction to quantum mechanical results			
2	unit 1	Schrodinger equation and derivation			
3	unit 1	postulates of quantum mechanics			
4	unit 1	discussion of solution of the equation viz. Particle in a box.			
5	unit 1	discussion of sol. of the eq. viz. the harmonic oscillators			
6	unit 1	discussion of sol. of the eq. viz. the rigid rotor			
7	unit 1	discussion of sol. of the eq. viz. the hydrogen atom			
8	unit 1	discussion of sol. of the eq. viz. the helium atom			
9	unit 1	limitation of schrodinger theory			
10	unit 1	Revision session on completion of unit.			
11	unit 2	Introduction : Approximation Methods			
12	unit 2	The variation theorem: Linear variation principle			
13	unit 2	Perturbation theory(first order and non degenerate)			
14	unit 2	Application of variation method			
15	unit 2	Perturbation theory to the Helium atom			
16	unit 2	Molecular Orbital Theory : Introduction			
17	unit 2	Huckel theory of conjugated systems bond			
18	unit 2	charge density & its calculations			
19	unit 2	Application of Huckel thoery to ethylene			
20	unit 2	Application of Huckel thoery to butadiene			
21	unit 2	Application of Huckel thoery to cyclopropenyl radical			
22	unit 2	Application of Huckel thoery to cyclobutadiene			
23	unit 2	Introduction to extended Huckel theory			
24	unit 2	Revision session on completion of unit.			
25	unit 3	Angular Momentum : Introduction			
26	unit 3	Ordinary angular momentum, generalized angular momentum			
27	unit 3	Eigen functions for angular momentum using ladder operator			
28	unit 3	addition of angular momentum			
29	unit 3	Spin, anti-symmetry theory			
30	unit 3	Pauli's exclusion principle			
31	unit 3	derivation of pauli's exclusion principle			

32	unit 3	Revision session on completion of unit.
33	unit 4	Classical Thermodynamics : Laws of thermodynamics
34	unit 4	free energy, chemical potential and entropies
35	unit 4	partial molar free energy, partial molar volume, molar heat
36	unit 4	Fugacity: concept & determination of fugacity
37	unit 4	Non- Ideal systems: Excess function of non-ideal solution
38	unit 4	Activity & Activity Constant
39	unit 4	Determination of activity coefficients
40	unit 4	Debye-Huckel theory for activity coefficient of electrolyte sol.
41	unit 4	activity coefficient : ionic strength
42	unit 4	Application of phase rule to three component systems
43	unit 4	Second order phase transition
44	unit 4	Revision session on completion of unit.
45	unit 5	Introduction : Statistical Thermodynamics
46	unit 5	Concept of distribution and application
47	unit 5	Thermodynamics probability and most probable distribution
48	unit 5	Ensamble averaging and postulates of ensamble averaging
49	unit 5	Canonical, Grand Canonical & Micro Canonical ensambles
50	unit 5	Corresponding distribution law (using Lagrange's method)
51	unit 5	Partition function - translation, rotational, vibrational
52	unit 5	Partition function - vibrational partitions
53	unit 5	Partition function - electronic partitions
54	unit 5	Calculation of thermodynamics properties in terms of partition
55	unit 5	application of partition functions
56	unit 5	Fermi- Dirac statistics
57	unit 5	distribution law & application to metal
58	unit 5	Bose-Einstein statistics distribution law
59	unit 5	Bose-Einstein statistics distribution law & application to Helium
60	unit 5	Revision session on completion of unit.

	Maharaja Ranjit Singh College of Professional Sciences, Indore				
Department of Chemical Science					
	Lesson Plan - M. Sc. I (July 2018 - Dec 2018)				
		Subject - Group Theory and Spectroscopy -I			
		Teacher - Dr. Lal Kumar			
Day/Lecture	Unit	Торіс			
1	ī	Symmetry and Group theory in Chemistry: Symmetry elements and symmetry operation			
2	I	Group, subgroup, conjugacy relation and classes			
3	Ι	Point and symmetry group			
4	Ι	Schonfilies symbols			
5	Ι	Repesentation of groups by matrices(representation for the Cn, Cnv, Cnh, Dnh,			
6	Ι	Character of a representation			
7	Ι	The great orthogonality theorem(without proof) and its importance			
8	Ι	Character Tables and their use;spectroscopy			
0	т	Derivation of character table for Cv and C3v point group symmetry aspacts of molecular			
9	1	vibration of H2Omolecule.			
10	II	Microwave Spectroscopy: Classification of molecules,			
11	II	rigid rotator model			
12	II	effect of isotopic substitution on the transition frequences			
13	II	intensities, non-rigid rotator			
14	II	Stark effect, nuclear and electron spin interaction and			
15	II	effect of external fields			
16	II	Applications			
17	III	Infrared Spectroscopy: Review of linear harmonic oscillator			
18	III	Vibrational energies of diatomic molecules			
19	III	Zero point energy			
20	III	Force constant and bond strengths			
21	III	Harmonicity, Morse Potential energy diagram			
22	III	Vibration-rotation spectroscopy			
23	III	PQR Branches, Breakdown of Oppenheimer approximation			
24	III	Vibration of polyatomics molecules, selection rules			
25	III	Normal mode of Vibration,			
26	III	Group frequencies, Overtones, Hot bands,			
27	III	Factors affecting the band positions and intensities			
28	III	Far IR region, metal ligand vibrations			
29	III	Coordinate Analysis			

30	IV	Raman Spectroscopy: Classical theory of Raman effect
31	IV	Quantum theory of Raman effect
32	IV	Pure rotational
33	IV	Vibrational and Vibrational-rotational Raman Spectra
34	IV	Selection Rules, Mutual exclusion principle
35	IV	Resonance Raman Spectroscopy
36	IV	Coherent Anti-stokes Raman Spectroscopy (CARS)
37	V	Electronic Spectroscopy: Molecular Spectroscopy
38	V	Energy levels molecular orbitals
39	V	Vibronic transitions, vibrational progression and geometry of the excited states
40	V	Franck-Condon principle
41	V	Electronic spectra of polyatomics molecules
42	V	Emission spectra: Radio-active and non-radio active decay
43	V	Internal conversion
44	V	Spectra of transition metal complexes
45	V	Charge-transfer spectra
46	V	Photoelectron Spectroscopy: basic principle,
47	V	photo-electric effect, ionisation process
48	V	Koopmann's theorem
49	V	photoelectron spectra of simple molecules
50	V	ESCA
51	V	Chemical information from ESCA
52	V	Auger Electron spectroscopy basic idea

Maharaja Ranjit Singh College of Professional Sciences, Indore					
Department of Chemical Sciences					
Lesson Plan - M. Sc. I Sem (July 2018 -Dec 2018)					
Subject - Mathematic for Chemists					
		Teacher -			
Day/Lecture	Unit	Торіс			
1	1	Vectors: dot			
2	1	Cross			
3	1	Triple products			
4	1	Gradient			
5	1	Divergence			
6	1	Curl			
7	1	Vector calculus			
8	1	Matrix algebra: Addition			
9	1	Multiplication			
10	1	Inverse			
11	1	Adjoint			
12	1	Transpose			
13	2	Differential calculus			
14	2	Functions			
15	2	Continuity			
16	2	Differentiability			
17	2	Rules for differentiation			
		Applications of differential calculus including maxima and			
18	2	minima			
19	2	Maximally populated rotational energy levels			
20	2	Maximally populated rotational energy levels			
21	2	Bohrs radius			
22	2	Bohrs radius			
23	2	Most probable velocity from Maxwells distribution			
24	2	Most probable velocity from Maxwells distribution			
25	3	Integral calculus			
26	3	Basic rules for integration			
27	3	Basic rules for integration			
28	3	Integration by parts			
29	3	Partial fractions and substitution			
30	3	Partial fractions and substitution			
31	3	Reduction formulae			
32	3	Applications of integral calculus			
33	3	Functions of several variables			
34	3	Partial differentiation			
35	3	Co-ordinate transformations			
36	3	Example: Cartesian to spherical polar			

37	4	Elementary differential equations
38	4	First order and first degree differential equations
39	4	First order and first degree differential equations
40	4	Homogenous
41	4	Exact and linear equations
42	4	Applications to chemical kinetics
43	4	Secular equilibria
44	4	Quantum chemistry
45	4	Sccond order differential equation and their solutions
46	4	Sccond order differential equation and their solutions
47	5	Permutation and probability
48	5	Permutations and combinations
49	5	Permutations and combinations
50	5	Permutations and combinations
51	5	Probability and probability theorems average
52	5	Probability and probability theorems average
53	5	Probability and probability theorems average
54	5	Variance
55	5	Root means square deviation
56	5	Examples from the kinetic theory of gases etc
57	5	Examples from the kinetic theory of gases etc
58	5	Fitting
59	5	Least squares fit etc with a general polynomial fit
60	5	Least squares fit etc with a general polynomial fit

	Maharaja Ranjit Singh College of Professional Sciences, Indore			
Department of Chemical Sciences				
Lesson Plan - M.Sc. I Sem Chemistry (July 2018 -Dec 2018)				
Subject - Biology for chemists				
	Teacher - Dr. Mukesh Gupta			
Unit	Торіс			
Unit 1	Cell structure and functions, structure prokaryotic and eukaryotic			
	Intracellular organelles and their functions			
	Comparasion of plant and animal cells			
	Overview and function			
	Comparasion of plant and animal cells			
	Overview of metabolic processes-catabolism and anabolism			
	ATP-the biology energy currency			
	Origin of life-unique properties of carbon chemical evolutionand rise of living systems			
	Origin of life-unique properties of carbon chemical evolutionand rise of living systems			
	Introduction to bio-molecules			
	Building blocks of bio-macromolecules			
Unit 2	Carbohydrate-conformation of monosaccharides			
	Structure and funtion of important derivatives of monosaccharides like glycosides			
	Structure and funtion of important derivatives of monosaccharides like deoxy sugars			
	Structure and funtion of important derivatives of monosaccharides like myoinositol			
	Structure and funtion of important derivatives of monosaccharides like amino sugars			
	Structure and function of important derivatives of monosaccharides like N-acetylmuramic acid			
	Structure and function of important derivatives of monosaccharides like disaccharides			
	Structurel nelvagesherides cellulose and chitin			
	Structural polysaccharides centrolse and children			
	Storage of polysaccharides, starch and glycogen			
	Storage of polysaccharides- starch and grycogen			
	Structural and biological function of glucosaaminoglycans of mucopolysaccharides			
	Carbohydrate of glycoproteins and glycolinids			
	Role of sugar in biological recognition			
	Blood sugar substances			
	Ascorbic acid			
	Unit 1 Unit 1 Unit 1 Unit 1 Unit 1 Unit 2 Unit 2 Unit 2 Unit 2			

29	Unit 3	Lipid- fatty acids, essential fatty acids
30		Structure and function of triacylglycerols
31		Structure and function of glycerophospholipids
32		Structure and function of sphingolipids
33		Structure and function of cholesterol
34		Structure and function of bile acids
35		Structure and function of prostaglandins
36		Liproproteins-composition and function role in atherosclerosis
		Properties of lipid aggregates-micelles, bilayers, liposomes and their possible biological
37		function
		Properties of lipid aggregates-micelles, bilayers, liposomes and their possible biological
38		function
		Properties of lipid aggregates-micelles, bilayers, liposomes and their possible biological
39		function
40		Biological membranes
41		Fluid mosaic model of membrane structure
42		Lipid metabolism beta-oxidation of fatty acids
43	Unit 4	Amino-acid, properties and proteins
44		Chemical and enzymatic hydrolysis of proteins to peptides, amino acid sequencing
45		Chemical and enzymatic hydrolysis of proteins to peptides, amino acid sequencing
46		Chemical and enzymatic hydrolysis of proteins to peptides, amino acid sequencing
47		Secondary structure of proteins
48		Forces responsible for holding of secondary structure
49		alpha-helix,beta-sheets
50		super secondary structure, triple helix structure of collagen
51		Tertiary structure of protein-folding and domain structure
52		Quaternary structure
53		Amino acid metabolism -degradation and biosynthesis of amino acid
54		Sequence determination:chemical
55		Sequence determination:enzymatic
56		Sequence determination:mass spectral
57		Sequence determination:recemization
58		Sequence determination:detection
59		Chemistry of oxytoin and tryptophan releasing hormone (TRH)
60	Unit 5	Nucleic acids, purine and pyrimidine bases of nucleic acid
61		Base pairing via H-bonding
62		Structure of ribonucleic acids(RNA) and deoxyribonucleic acid(DNA)
63		Structure of ribonucleic acids(RNA) and deoxyribonucleic acid(DNA)
64		Double helix model of DNA and forces responsible for holding it
65		Chemical and enzymatic hydrolysis of nucleic acid
66		The chemical basis for heredity
67		An overviewof replication of DNA, transcription, translation and genetic code
68		An overviewof replication of DNA, transcription, translation and genetic code
69		Chemical synthesis of mono and tri nucleoside

Maharaja Ranjit Singh College of Professional Sciences, Indore				
Department of Chemical Sciences				
Lesson Plan - M. Sc. I Sem. (July 2018 -Dec 2018)				
		Subject - Inorganic Chemistry Practical		
		Teacher - Prof. Seema Shintre		
Day/Lecture	ure Unit Topic			
	1	Qualitative Analysis		
1	А	Analysis of less common metal ions: W, Mo, Ti, Zr, V etc.		
2	В	Analysis of insoluble residue: Oxides, Sulphates and halides		
3		Analysis of insoluble residue: Oxides, Sulphates and halides		
	2	Quantitative Analysis(Gravimetrically and volumetrically)		
4		Seperation & estimation of two metal ions Cu-Zn		
5		Seperation & estimation of two metal ions Fe-Mg		
6		Seperation & estimation of two metal ions Ni-Zn		
		Chromatography		
7		Seperation, identification and determination of cations by Paper chromatography		
8		Seperation, identification and determination of cations by Paper chromatography		
9		Seperation, identification and determination of anions by Paper chromatography		
		Preparations		
		To prepare and submit selected inorganic complexes		
10		VO(acac)2		
11		Ni(acac)2		
12		[Co(NH3)6]Cl3		
13		Reinecke's salt		
14		Prussian Blue		
15		Oxalate complexes of Chromium(III)		
16		Oxalate complexes of Copper(II)		

		Maharaja Ranjit Singh College of Professional Sciences, Indore		
Department of Chemical Sciences				
	Lesson Plan - M. Sc. I Sem. (July 2018 -Dec 2018)			
		Subject - Organic Chemistry Practical		
		Teacher - Dr. Lal Kumar		
Day/Lecture	Unit	Торіс		
1	Part I	Qualitative Anaysis		
2	1	To separate and identify the given organic mixture having three solid organic compounds		
3	2	To separate and identify the given organic mixture having three solid organic compounds		
4	3	To separate and identify the given organic mixture having three solid organic compounds		
5	4	To separate and identify the given organic mixture having three solid organic compounds		
6	5	To separate and identify the given organic mixture having two solid and one liquid organic compounds		
7	6	To separate and identify the given organic mixture having two solid and one liqiud organic compounds		
8	Part II	Organic Synthesis		
9	1	To prepare and submit Aspirin (Acetylation Reaction)		
10	2	To prepare and submit adipic acid from cyclohexene		
11	3	To prepare and submit meta-dinitroaniline from meta-dinitrobenzene		
12	4	To prepare and submit para-nitroacetanilide from acetanilide		

	Maharaja Ranjit Singh College of Professional Sciences, Indore				
	Department of Chemical Sciences				
Lesson Plan - M. Sc. I Sem. (July 2018 -Dec 2018)					
		Subject - Physical Chemistry Practical			
		Teacher - Prof. Deepanshu Pandey			
Day/Lecture	Day/Lecture Unit Topic				
1	Sec A	Error Analysis & Stattistical Data Analysis			
2	Sec A	Error, types of error, minimization of errors			
3	Sec A	distribution curves precision, accuracy & combination			
4	Sec A	Statistical treatment for error analysis			
5	Sec A	Student's t-test, null hypothesis			
6	Sec A	rejection criteria			
7	Sec A	F& Q- test			
8	Sec A	Linear regression analysis, curve fitting			
9	Sec A	calibration of volumetric appratus : Burette, Pipette & Std. Flask			
10	Sec A	Adsorption: To study surface tension Gibb's Equation			
11	Sec A	Phase Equilibrium :			
12	Sec A	Determination of congruent composition and temperature of a binary system			
13	Sec A	Determination of glass transition temperature of a given salt conductometrically			
14	Sec A	Construct the phase diagram for three component system			
15	Sec B	Chemical Kinetics : Determination of the effect of (a) change of temperature			
16	Sec B	(b) change of concentration of reactant & catalyst			
17	Sec B	(c) ionic strength of the media on the velocity of hydrolysis of an ester			
18	Sec B	Determination of the velocity constant of hydrolysis of an ester in micellar			
19	Sec B	Determination of velocity constant for theoxidation of iodide ions by H2O2 .			
20	Sec B	Flow clock reaction			
21	Sec B	Determination of primary salt effect on the kinetics of ionic reaction			
22	Sec B	Solution : Determination of molecular weight of non-volatile & electrolyte by cryoscopic			
23	Sec B	Determination of the degree of dissociation of weak electrolyte			

Maharaja Ranjit Singh College of Professional Sciences, Indore				
	Department of Chemical Sciences			
Lesson Plan - M. Sc. II (Jan 2019 - June 2019)				
Subject - Organic Chemistry-II				
		Teacher - Dr. Dipak Sharma		
Day/Lecture	Unit	Торіс		
1	1	Aromatic Electrophilic Substitution: The arenium ion mechanism, orientation and reactivity,		
1 1		energy profile diagrams		
2		The ortho/para ratio, ipso attack, orientation in other ring systems		
3		Quantitative treatment of reactivity in substrates and electrophiles		
4		Diazonium coupling		
5		Vilsmeir reaction		
6		Gatterman Koch reaction		
7		Atomatic Nucleophilic Substitution: The SNAr, SN1		
8		SN2 and benzyne mechanism		
9		Reactivity effect of substrate structure, leaving group and attacking nucleophilie		
10		Von Richter rearrangement		
11		Sommelet-Hauser rearrangement		
12		Smiles rearrangement		
13	2	Free radical reactions: Types of free radical reactions		
14		Free radical substitution mechanism		
15		Mechanism at an aromatic substrate		
16		Neighbouring group assistance		
17		Reactivity for aliphatic and aromatic substrates at a bridgehead.		
18		Reactivity in the attacking radicles. The effect of solvents on reactivity		
19		Allylic halogenation (NBS)		
20		oxidation of aldehydes to carboxylic acids, auto-oxidation		
21		Coupling of alkynes and arylation of aromatic compounds by diazonium salts		
22		Sandmeyer reaction		
23		Free radical rearrangement		
24		Hunsdiecker reaction		
25	3	Mechanistic and stereochemical aspects of addition reaction involving electrophilies		
26		Mechanistic and stereochemical aspects of addition reaction involving nucleophiles		
27		Mechanistic and stereochemical aspects of addition reaction involving free radicals		
28		regio and chemo selectivity		
29		regio and chemo selectivity		
30		orientation and reactivity		
31		Addition to cyclopropane ring		
32		Hydrogenation of double and triple bonds		
33		Hydrogenation of aromatic rings		
34		Hydroboration		
35		Michael reaction		
36		Sharpless asymmetric epoxidation		

37	4	Addition to carbon-hetero multiple bonds. Mechanism of metal hydride reduction of saturated and unsaturated carbonyl compounds, acid esters and nitriles		
38		Mechanism of metal hydride reduction of saturated and unsaturated carbonyl compounds, acid esters and nitriles		
39		Addition of Grignard reagents, organozinc and organolithium reagents to carbonyl compounds		
40		Addition of Grignard reagents, organozinc and organolithium reagents to carbonyl compounds		
41		Witting reaction, mechanism of condensation reactions involving enolates-aldol reaction		
42		Witting reaction, mechanism of condensation reactions involving enolates-Knoevenagel, Claisen, Mannich reactions		
43		Mechanism of condensation reactions involving enolates- Benzoin, Perkin and Stobbe reactions		
44		Hydrolysis of esters and amides, ammonolysis of esters		
45		The E2, E1 and E1cB mechanism and their spectrum		
46		Orientation of the double bonds		
47		Reactivity-effects of substrate structures, attacking base, the leaving group and the medium		
48		Mechanism and orientation in pyrolytic elimination		
49	5	Pericyelic reactions: Molecular orbital symmetry		
50		Frontier orbitals of ethylene, 1,3-butadiene, 1,3,5-hexatriene and allyl system		
51		Classification of periycyclic reactions, Woodward-Hoffmann correlation diagrams		
52		FMO and PMO approach		
53		Electrocyclic reactions-conrotatory and disrotatory motions, 4n, 4n+2 and allyl systems		
54		Cycloadditions-antarafacial and suprafacial additions, 4n, 4n+2 systems, 2+2 addition of ketenes		
55		1.3 dipolar cycloadditions and cheleotrpic reactions		
56		Sigmatropic rearrangements-suprafacial and antarafacial shifts of H		
57		Signatropic involving carbon moieties, 3,3-and5,5 signatropic rearrangements		
58		Claisen, cope and aza-cope rearrangements		
59		Fluxional tautomerism		
60		Ena reaction		

Maharaja Ranjit Singh College of Professional Sciences, Indore

Department of Chemical Sciences

Lesson Plan - M. Sc. II Sem. (Jan 2019 - June 2019)

Subject - Inorganic Chemistry-II

Teacher - Prof. Seema Shintre

Day/Lecture Unit

Topic

	1 Electronic spectral studies of Transition metal complexes
1	Spectroscopic ground states
2	orgel diagram for transition metal complexes(d1to d9)
3	orgel diagram for octahedral geometry of transition metal complexes(d1to d9)
4	orgel diagram for tetrahedral geometry of transition metal complexes
5	Tanabe-sugano diagrams for transition metal complexes
6	Tanabe-sugano diagrams for transition metal complexes
7	Correlation diagram
8	Selection rule for electronic spectroscopy
9	Spin selection rule and Laport selection rule
10	Intensity of various type of electronic transition
11	Charge transfer spectra
12	Calculation of 10Dq, B and β parameters
	2 Magnetic properties of transition metal complexes
13	Anamalous magnetic moments
14	Quenching of orbital contribution
15	Orbital contribution to magnetic moment
16	Orbital contribution to magnetic moment
17	Magnetic exchange coupling and spin crossover
	3 Metal π complexes
18	Metal carbonyl, structure and bonding
19	Vibrational spectra of metal carbonyls for bonding and structure elucidation
20	Vibrational spectra of metal carbonyls for bonding and structure elucidation
21	Important reaction of metal carbonyls and its preparation
22	Structure and bonding in metal carbonyl
23	Important reaction of metal nitrosyl and its preparation
24	Dinitogen and dioxygen complexes
25	Tertiary phosphine as ligand
	4 Metal-Clusters
26	Highar boranes: classification and structure
27	Highar boranes: bonding, preparations, properties and uses
28	Carboranes: preparation, properties and uses
29	metalloboranes: preparation, properties and uses
30	metallo-carboranes compounds with metal metal multiple bond
31	metallo-carboranes compounds with metal metal multiple bond
	5 Optical rotatory dispersion and circular dichroism
32	Linearly and circularly polarized lights
33	optical rotatory power and circular birefringence
34	ORD and CD
35	Cotton effect
36	Faraday and Kerr effects
37	Assignment of electronic transitions
38	Application of ORD and CD
39	Application of ORD and CD

Maharaja Ranjit Singh College of Professional Sciences				
Department of Chemical Sciences				
Lesson Plan - M. Sc. II Sem. (Jan 2019 - June 2019)				
Subject - Physical Chemistry Practical				
	Teacher - Prof. Deepanshu Pandey			
Day/Lecture	Unit	Торіс		
1	Unit 1	Chemical Dynamics : Introduction, Defining Rate Law		
2	Unit 1	Methods of determining rate laws		
3	Unit 1	collision theory of reaction rates		
4	Unit 1	steric factor, activated complex theory, Arrhenius equation		
5	Unit 1	Ionic reaction, Kinetic salt effects		
6	Unit 1	Steady state kinetics		
7	Unit 1	Kinetics and thermodynamics control of reactions		
8	Unit 1	Treatment of unimolecular reactions		
9	Unit 1	Dynamic chain reaction (hydrogen-bromine reaction)		
10	Unit 1	Pyrolysis of acetaldehyde, decomposition of ethane		
11	Unit 1	Photochemical reaction (hydrogen-bromine reaction)		
12	Unit 1	Photochemical reaction (hydrogen-chlorine reaction)		
13	Unit 1	Homogeneous catalysis Kinetics of enzyme reaction		
14	Unit 1	General characteristic of fast reaction		
15	Unit 1	Study of fast reaction by flow method		
16	Unit 1	Relaxation method, flash photolysis		
17	Unit 1	nuclear magnetic resonance method		
18	Unit 1	Dynamics of unimolecular reactios: Lindemann Hinshelwood		
19	Unit 1	Rice- Ramsperger kassel Marcus theories for unimolecular		
20	Unit 1	Revision after completion of chapter		
21	Unit 2	Surface Chemistry: Adsorption : Introduction		
22	Unit 2	Surface Tension, Capillary action,		
23	Unit 2	Vapour pressure of droplets (Kelvin equation)		
24	Unit 2	Gibbs adsorption isotherm		
25	Unit 2	estimation of surface area(BET equation)		
26	Unit 2	Surface films on liquids (Electro-Kinetic phenomenon)		
27	Unit 2	Micelles: Surface active agents		
28	Unit 2	Classification of surface active agents		
29	Unit 2	micellezation, hydrophobic interaction, Critical Micellar Conc.		
30	Unit 2	Factor affecting CMC of surfactant		
31	Unit 2	counter ion binding to micelles, thermodynamics of micellization		
32	Unit 2	Phase seperation & mass action models		
33	Unit 2	Solublization, Micro emulsion reverse micelles		
34	Unit 2	Revision on completion of unit		

35	Unit 3	Macromolecules : Polymers-defination and types		
36	Unit 3	electrically conducting, Fire resistant, liquid crystal polymers		
37	Unit 3	Kinetics of polymerization, mechanism of polymerization		
38	Unit 3	Molecular mass, mass average molecular mass		
39	Unit 3	molecular mass determination		
40	Unit 3	osmometry, viscometery, diffusion		
41	Unit 3	light scattering methods, sedimentation		
42	Unit 3	number average molecular mass		
43	Unit 3	chain configuration of macromolecules		
44	Unit 3	calculation of average dimension of various chain structures		
45	Unit 3	Revision on completion of unit		
46	Unit 4	Non-equilibrium Thermodynamics: Thermodynamic criteria		
47	Unit 4	entropy production and entropy flow		
48	Unit 4	entrophy balanced equation for different irreversible process		
49	Unit 4	transformation of generlized fluxes and forces		
50	Unit 4	Non-equilibrium stationary states		
51	Unit 4	phenomenological equations, microscopic reversibility		
52	Unit 4	onsager reciprocity relation		
53	Unit 4	Electrokinetic phenomena		
54	Unit 4	diffussion, electric conduction		
55	Unit 4	Revision on completion of unit		
56	Unit 5	Electrochemistry :Debye Huckel Onsager treatment		
57	Unit 5	Solvent interaction, Debye Huckel jerum mode		
58	Unit 5	Thermodynamics of electrified interface equation		
59	Unit 5	Derivation of electro capillarity, Lippmann equation		
60	Unit 5	Structure of electrified interfaces, Over potential exchange current		
61	Unit 5	Butler Volmer equation, Tafel plot, quantization of charge		
62	Unit 5	tunneling, theory of double layer at semiconductor		
63	Unit 5	effect of light on solution, Polarography theory, Ilkovic equation		
64	Unit 5	Half wave potential & its significance		
65	Unit 5	Revision on completion of unit		

Maharaja I				
	L			
	S			
Day/Lecture	Unit			
1	Ι			
2	Ι			
3	Ι			
4	Ι			
5	Ι			
6	Ι			
7	Ι			
8	Ι			
9	Ι			
10	Ι			
11	Ι			
12	Ι			
13	II			
14	Π			
15	Π			
16	Π			
17	Π			
18	Π			
19	Π			
20	III			
21	III			
22	III			
23	III			
24	III			
25	III			
26	III			
27	III			
28	III			
29	III			
30	III			

31	IV
32	IV
33	IV
34	IV
35	IV
36	IV
37	IV
38	IV
39	IV
40	IV
41	IV
42	IV
43	IV
44	IV
45	V
46	V
47	V
48	V
49	V
50	V
51	
52	V
53	V

Ranjit Singh College of Professional Sciences, Indore
Department of Chemical Sciences
esson Plan - M. Sc. II Sem. (Jan 2019 - June 2019)
Subject - Spectroscopy and Diffraction Methods-II
Teacher - Dr. Lal Kumar
Nuclear Magnetic Resonance Spectroscopy
Nuclear spin. Nuclear Resonance
Saturation
Shielding and deshielding of magnetic nuclei
Chemical Shift and its measurements
Factors influencing chemical Shift
Spin-Spin Interactions
ractors innuencing coupling constant J value Classification (AAD, ADC,
Spin decoupling
Basic ideas about instrument
NMR Studies of nuclei other than proton 13C, 19F, and 31P FT-NMR
Advantages of FT-NMR
Nuclear Quadrupole Resonance Spectroscopy
Quadrupole Nuclei
Quadrupole Moments
Electric Field Gradient
Coupling Constant
Splitting
Application of NQR Spectroscopy
Electron Spin Resonance Spectroscopy
Basic principles ESR
Zero field splitting and
Kramer's degenracy
Factors affecting the g-value
Isotropic and Anisotropic
Hyperfine coupling constants
Spin Hamiltonian
Spin densities and Mc Connell relationship
Measurement techniques
Application of ESR Spectroscopy

X-rays Diffraction
Bragg condition
Miller Indices
Laue Method
Bragg Method
Debye Scherer method of x-ray structural analysis of crystals
index refelections
identification of unit cells from systematic absences in diffraction patters
Structure of simple lattices
x-rays intensities
Structure factor and its relation to intensity and electron density
phase problem
Description of the procedure for an X-ray structure analysis
Absolute congiguration of molecules
Electron Diffraction (Part A)
Scattering intensties vs. scattering angle
Wierl equation, measurement techniques
elucidation of structure of simple gas phase molecules
low energy electron diffraction
structure of surfaces
Neutron Diffraction (Part B)
Scattering of neutrons by solids measurement techniques
elucidation of structure of magnetically ordered unit cells

Maharaja Ranjit Singh College of Professional Sciences, Indore

Department of Chemical Sciences

Lesson Plan - M.Sc. - II Sem (Jan 2019 - June 2019) Subject - Computer for Chemist

		Teacher - Prof. Pravin Kumar Sharma
Day/Lecture	Unit	Торіс
1	Ι	Introduction of computer and its components with the help of block diagram and characteristics
2	Ι	Classification of computer with hierarchical diagram: Purpose, Data Handling and Functionality
		Generation of Computers on the bassis: Period, Technology, Languages, Memory, Important computers,
3	Ι	Merits and Demerits
4	Ι	Input and Output devices and their functions
5	Ι	Memroy and its Classification: Primary(RAM, ROM and its types)
6	Ι	Secondary Memory:Sequential Access and Direct Access(Manetic Tape, Magnetic disk, Optical disk
7	Ι	What is Program, software and types of software,
8	Ι	Programming language and its types: High lvel, Middle level and Low level
9	Ι	Introduction of Operating system and its logical architecture
10	Ι	Types and functions of operating system
11	Ι	Difference between CLI/GUI operating system(DOS, Windows and UNIX)
		Tools of Programming Languages: Algorithm, its keyword and advantage and disadvantages, Flowchart, its
12	II	notations
13	II	Introduction of C Language and its histirical development, types of C
14	II	Keywords, Identifiers, Literals, Constant and Variables
15	II	What is Instruction?, types of Instructions used in C: Arithemtic, Control, I/O and type declaration
16	II	Data types used in C language: Primary, Pointer, Derived, Void, User defined
17	II	Statements in C Language: Expression, Compound and Control
18	II	Decision control statement: if, if-else and conditional, nested-if-else
		Operator and its types: Arithmetic, Relational, Logical, Increment and Decrement, Condition, bitwise and
19	II	Special
20	Π	Hierachy of operators, Loop control structres: for, while, do-while and Odd
21	Π	Jumping Statements: goto, break and continue,
22	Π	Case control structures: switch() and exit()
23	П	Difference between for, while and do-while loop control structures
24	Π	Function and its types: Library and User-defined
25	III	Program to print addition, substraction, multiplication and division
26	III	Program to caluclate factoral of given number
27	III	Program to print table of given number
28	III	Program for Vander wall equation
29	III	Program to calculate Normality, Molarity and Molality of solutions
30	III	Program for radiacive decay(half life and full life)
		Standard software packages: MS-word its features, mail-merge, macros, formatting & table handling, header
31	IV	and footer
32	IV	MS-Excel: spread sheet, workbook and its contents, cell
33	IV	working with formulas, sorting, freeze panes and filters
34	IV	Insert charts in MS-Excel: Pie, Bar, column
35	IV	Introduction of MS-Power point and its features,
36	IV	components of power point: slide, Handouts, Speakers note and outline view
37	IV	Custom animation, setup show and its options, slide transition
38	IV	Different views of power point presentation
39	V	Introduction of Internet, its advantages and disadvantages
40	V	Search engines and its types and list of different search engines for chemist
41	V	Types of files: PDF, JPG, JPEG, Bitmap, DOCX, XLSX

Maharaja Ranji				
	Lesson			
	1			
Day/Lecture	Unit			
1	Ι			
2	Ι			
3	Ι			
4	Ι			
5	Ι			
6	Ι			
7	Ι			
8	I			

it Singh College of Professional Sciences, Indore

Department of Chemical Sciences

Plan - M. Sc. II Sem. (Jan 2019 - June 2019)

Subject - Organic Chemistry Practical

Teacher - Dr. Lal Kumar

Topic

To prepare and submit 9,10-diffyuroantifracene-ando-alpha, beta-

To prepare and submit phenylazo-beta-naphthol coupling reaction

To prepare and submit phenolphthalene

To prepare and submit flouresencein dyes to estimate hydroxy group or phenor from oromate

to determine the Sponification value of an unknown oil or fat

to prepare and submit Benzyl alcohol and Benzoic acid

To determine acid value of unknown oil and fat by titration method

Mahara	Μ	aharaja	
		L	
	Day/Lecture	Unit	
	1		
	2		
	3		
	4 5		
	6 7		

Ranjit Singh College of Professional Sciences, Indore

Department of Chemical Sciences

.esson Plan - M. Sc. II Sem. (Jan 2019 - June 2019)

Subject - Inorganic Chemistry Practical

Teacher - Prof. Seema Shintre

Topic Chromatography

Seperation, identification and determination of cations by column chromatography

Seperation, identification and determination of anions by column chromatography

Preparations: To prepare the following

K3[Cr(SCN)6].4H2O

[Co(NH3)4(NO2)2]Cl

[Co(NH3)5Cl]Cl2

Ni(dmg)2

 $[Co(py)_2Cl_2]$

[Cu.3[CS(NH2)]2SO4.2H2O

Na3[Co(NO2)6]

	Maharaja Ranjit Singh College of Professional Sciences, Indore					
Department of Chemical Sciences						
Lesson Plan - M. Sc. II Sem. (Jan 2019 - June 2019)						
Subject - Physical Chemistry Practical						
Day/Leature	I mit	Tenio				
Day/Lecture	Unit	Торіс				
1	Sec A	Conductometry				
2	Sec A	Determination of the velocity constant, order of the reaction and energy activation for saponification of ethyl acetate by sodium hydroxide conductometrically				
3	Sec A	Determination of solubility & solubility product of sparingly soluble salts				
4	Sec A	Determination of the strenght of strong & weak acid in a given mixture conductometrically.				
5	Sec A	To study the effect of solvent on the conductance of AgNO3 & to determine the degree of dissociation & equilibrium constant in different solvents & test debye Huckel Onsager theory.				
6	Sec A	Determine of the activity coefficient of zinc ions in the solution of 0.002M zinc sulphate using Debye Huckel's limiting law				
7	Sec A	Polarimetry				
8	Sec A	Determination of rate constant for hydrolysis/ inversion of sugar using a polarimeter.				
9	Sec A	Enzyme kinetics - inversion of sucrose				
10	Sec B	Potentiometry / pH metry :				
11	Sec B	Determination of strengths of halides in a mixture potentiometrically				
12	Sec B	Determination of the strenght of strong & weak acid in a given mixture by potentiometer/ pH meter				
13	Sec B	Determination of temperature dependence of EMF of a cell.				
14	Sec B	Determination of the formation constant of silver-ammonia complex & stochiometry of the complex potentiometer				
15	Sec B	Acid- base titration in a non- aqueous media using a pH meter.				
16	Sec B	Refractometery :				
17	Sec B	Determination of refractive indices & specific refractions .				
18	Sec B	Molar & atomic refractivities				
19	Sec B	composition of a mixture of liquids				
20	Sec B	Concentration of sugar in a soluiton & polarizabilities of liquids.				

Mahara	aja Ra	njit Singh College of Professional Sciences, Indore			
Department of Chemical Sciences					
Lesson Plan - M. Sc. III (July 2018 - Dec 2018)					
Subject - Photochemistry					
		Teacher - Dr. Dinak Sharma			
Dav/Lecture	Unit				
1	1	Photochemical Reactions			
2	1	Interaction of electromagnetic radiation with matter			
3	1	Interaction of electromagnetic radiation with matter			
4	1	Types of excitations			
5	1	Fate of excited molecule			
6	1	Fate of excited molecule			
7	1	Fate of excited molecule			
8	1	Quantum yield			
9	1	Quantum yield			
10	1	Transfer of excitation energy			
11	1	Actinometry			
12	1	Actinometry			
13	2	Determination of reaction mechanism			
14	2	Classification			
15	2	Rate constants			
16	2	Life times of reactive energy state			
17	2	Life times of reactive energy state			
18	2	Determination of rate constants of reactions			
19	2	Determination of rate constants of reactions			
20	2	Effect of light intensity on the rate of photochemical reactions			
21	2	Effect of light intensity on the rate of photochemical reactions			
22	2	Types of photochemical reactions-			
23	2	Photo dissociation			
24	2	Gas-phase photolysis			
25	3	Photochemistry of Alkenes			
26	3	Intramolecular reactions of the olefinic bond			
27	3	Geometrical isomerism			
28	3	Cyclisation reactions			
29	3	Rearrangement of 1,4 and 1,5-dienes			
30	3	Rearrangement of 1,4 and 1,5-dienes			
31	3	Phtochemistry of aromatic compounds			
32	3	Isomerisations			
33	3	Isomerisations			
34	3	Additions			
35	3	Additions			
36	3	Substitutions			

37	4	Photochemistry of Carbonyl Compounds
38	4	Intramolecular reactions of carbonyl compounds
39	4	Intramolecular reactions of carbonyl compounds
40	4	Saturated compounds
41	4	Cyclic compounds
42	4	Acyclic compounds
43	4	Beta, Gama unsaturated compounds
44	4	Alpha, Beta unsaturated compounds
45	4	Cyclohexadienones
46	4	Intermolecular cyloaddition reactions
47	4	Dimerisations
48	4	Oxetane formation
49	5	Miscellaneous photochemical reactions
50	5	Photo-Fries reactions of annilides
51	5	Photo-Fries reactions of annilides
52	5	Photo-Fries rearrangement
53	5	Barton reaction
54	5	Singlet molecular oxygen and its reactions
55	5	Singlet molecular oxygen and its reactions
56	5	Photochemical formation of smog
57	5	Photodegradation of polymers
58	5	Photodegradation of polymers
59	5	Photochemistry of vision
60	5	Photochemistry of vision

Maharaja Ranjit Singh College of Professional Sciences, Indore					
Department of Chemical Sciences					
Lesson Plan - M. Sc. III Sem. (July 2018 - Dec 2018)					
Subject - Polymer					
	Teacher - Dr. Lal Kumar				
Dav/Lecture	Unit	Торіс			
1	Ι	Basics			
2	I	Importance of polymers			
3	I	Basic concepts: monomer, repeating units degree of polymerisations			
4	Ι	Basic ideas about Linear. Branched and network polymers			
5	Ι	Classification of polymers			
6	Ι	Polymerisation process			
7	Ι	condensation, addition, radical, chain - ionic and			
8	Ι	coordination and copolymerisation			
9	Ι	Poymerisation conditions and polymer reactions			
10	Ι	Polymerisation in homogeneous and heterogeneous systems			
11	II	Polymer Characterisation			
12	II	Polydispersion-average molecular weight concept			
13	II	Number Average molecular weight concept			
14	II	Weight Average molecular weight concept			
15	II	Viscosity Average molecular weight concept			
16	II	Polydispersity and molecular weight distribution			
17	II	The practical significance of molecular weight			
18	II	Measurement of molecular weights			
19	II	End group analysis			
20	II	Viscosity			
21	II	Light scattering and osmotic			
22	II	Ultracentrifugation methods			
23	III	Anaysis and testing of Polymers			
24	III	Chemical Analysis of Polymers			
25	III	Spectroscopic Methods			
26	III	X-ray Diffraction study			
27	III	Microscopy			
28	III	Thermal Analysis and physical testing			
29	III	Tesile strength			
30	III	Fatigue			
31	III	Impact			
32	III	Tear resistance, Hardness and Abrasion resistance			
33	IV	Inorganic Polymers			
34	IV	A General survey and scope of inorganic polymers			
35	IV	special characteristics			
36	IV	Classification of Homo and Hetero atomic polymers			
37	IV	Structure, Properties and Application of			
38	IV	Polymer based on boron borazines			
39	IV	boranes and carboranes			
40	IV	Polymers based on Silicon silicones			
41	IV	polymetalloxanes and polymetallosiloxanes			
42	IV	Silazanes			
43	V	Structure, Properties and Application of Polymers			
44	V	Polymers based on phosphorous-phosphazenes			
45	V	Polyphosphates			
46	V	Polymer based on Sulphur tetrasulphur			
47	V	Tetranitride and related compounds			
48	V	coordination and metal chelate polymers			

Maharaja Ranjit Singh College of Professional Sciences, Indore					
Department of Chemical Sciences					
Lesson Plan - M. Sc. III Sem. (July 2018 - Dec 2018)					
Subject - Organotransition Metal Chemistry					
	Teacher - Prof. Deenanshu Pandev				
Dav/Lecture	Unit				
1	Unit 1	Alkyls and Aryls of Transition Metals: Introduction			
2	Unit 1	Types & routes of synthesis			
3	Unit 1	stability & decomposition pathways			
4	Unit 1	Organocopper in organic synthesis			
5	Unit 1	Compounds of Transition Metal- Carbon Multiple Bonds			
6	Unit 1	Alkylidenes, alkylidynes			
7	Unit 1	Low valent carbenes & carbynes : Synthesis			
8	Unit 1	Low valent carbenes & carbynes : Synthesis			
9	Unit 1	Carbenes & Carbynes : nature of bond			
10	Unit 1	Carbenes & Carbynes : structural characteristic			
11	Unit 1	electrophilc & Nucleophilic attack on ligands			
12	Unit 1	Revision after completion of chapter			
13	Unit 2	Transition Metal π- Complexes :			
14	Unit 2	Tansititon metal π complexes with unsaturated organic molecules			
15	Unit 2	Alkenes:Preperation, Properties, Nature of bonding & structural feature			
16	Unit 2	Alkynes: Preperation, Properties, Nature of bonding & structural feature			
17	Unit 2	allyl : Preperation, Properties, Nature of bonding & structural feature			
18	Unit 2	diene : Preperation, Properties , Nature of bonding & structural feature			
19	Unit 2	arene : Preperation, Properties , Nature of bonding & structural feature			
20	Unit 2	trienyl : Preperation, Properties, Nature of bonding & structural feature			
21	Unit 2	Important reaction reactions related to nucleophilic attack on ligands			
22	Unit 2	Important reaction reactions related to electrophilic attacks on ligands			
23	Unit 2	Nucleophilic & electrophilic reaction in organic synthesis			
24	Unit 2	Revision after completion of chapter			
25	Unit 3	Transition organometallic compounds:			
26	Unit 3	Transition metal compounds with bond to hydrogen			
27	Unit 3	Transition metal compounds with bond to hydrogen			
28	Unit 3	Transition metal compounds with bonds to boron			
29	Unit 3	Transition metal compounds with bonds to boron			
30	Unit 3	Transition metal compounds with bonds to silicon			
31	Unit 3	Transition metal compounds with bonds to silicon			
32	Unit 4	Homogeneous Catalysis : Stoichiometric reaction for catalysis			
33	Unit 4	Homogeneous catalytic hydrogenation			
34	Unit 4	Zeigler-Natta polymerization of olefins (oxoreaction)			
35	Unit 4	Explanation			
36	Unit 4	activation of C-H bond			
37	Unit 4	Revision after completion of unit			
38	Unit 5	Fluxional Organometallic Compounds :			
39	Unit 5	Fluxionality and dynamic equilibrium in compounds such as η^2 olefins			
40	Unit 5	Fluxionality and dynamic equilibrium in compounds such as n3 allyl			
41	Unit 5	Fluxionality and dynamic equlibrium in compounds such as dienyl complexes			
42	Unit 5	Fluxionality and dynamic equilbrium in compounds such as dienyl complexes			
43	Unit 5	Fluxionality and dynamic equlibrium in compounds such as $\eta 2$ olefins			
44	Unit 5	Revision after completion of unit			

Ν	Maharaja Ranjit Singh College of Professional Sciences, Indore						
Department of Chemical Sciences							
Lesson Plan - M. Sc. III Sem. (July 2018 - Dec 2018)							
	Subject - Application of Spectroscopy-I						
		Teacher - Prof. Seema Shintre					
Day/Lecture	Unit	Торіс					
	1	Electronic Spectroscopy					
1		Electronic spectral studies for d1 to d9 system in octahedral complex via orgel diagram					
2		Electronic spectral studies for d1 to d9 system in tetrahedral complex via orgel diagram					
3		Electronic spectral studies for d1 to d9 system in square planner complex via orgel diagram					
4		Tanabe Sugano diagram					
	2	Vibrational Spectroscopy					
5		Inroduction part of vibrational and raman spectroscopy					
6		Symmetry and shape of AB, AB2, AB3, AB4. AB5 and AB6 molecule					
7		Mode of bonding of ambidentate ligands(nitrosyl and thiocyanate)					
8		Mode of bonding of bidentate ligands(ethylenediamine and diketoneto complexes)					
9		RRS and Application of resonance Raman spectroscopy					
	3	Nuclear magnetic resonance spectroscopy-I					
10		General introduction and defination					
11		Chemical Shift and spin spin interaction					
12		Shielding and deshielding mechanism					
13		measurmrnt of chemical shift values					
14		Correlation for protons bonded to carbon (aliphatic, olefinic, aldehydic and aromatic)					
15		Correlation for protons bonded to carbon (alcohols, phenols, enols)					
16		Correlation for protons bonded to carbon (carboxilic acids,amines,amides & mercapto)					

	4	Nuclear magnetic resonance spectroscopy-II
17		Chemical exchange and effect of deuteration
18		Complex spin spin interaction between 2,3,4 and 5 nuclei stereochemistry
19		Hindered rotation
20		Karplus curve variation of coupling constant with disordered angle
21		NMR shift reagents
22		solvent effect
23		Nuclear Overhauser Effect (NOE)
	5	Mossbauer Spectroscopy
24		Basic principle of mossbauer spectroscopy
25		Spectral parameters : chemical shift
26		Quadrupole interaction
27		Magnetic interaction
28		Application of mossbauer spectroscopy

Maharaja Ranjit Singh College of Professional Sciences, Indore						
Department of Chemical Sciences						
Lesson Plan - M.Sc. III Sem Chemistry (July 2018 - Dec 2018)						
	Subject - Environmental Chemistry					
		Teacher - Dr. Mukesh Gunta				
Dav/Lecture	Unit	Торіс				
1	Unit 1	Atmosphere- atmospheric layers				
2		vertical temperature profile				
3		Heat/ radiation budget of the earth				
4		Atmosphere system				
5		Properties of inosphere				
6		Thermodynamic derivation of lapes rate				
7		Temperature inversion				
8		Calculation of global mean temperature of the atmosphere				
9		Pressure variation in atmosphere and scale height				
10		Biochemical cycle of Carbon				
11		Biochemical cycle of nitrogen				
12		Biochemical cycle of sulphur				
13		Biochemical cycle of phosphorus				
14		Biochemical cycle of Oxygen				
15		Residence times				
16		Atmospheric chemistry, sources of trace atmospheric constituents				
17		Sources of trace atmospheric constituents nitrogen oxide				
18		Sources of trace atmospheric constituents sulphurdioxide and other sulphur compounds				
19		Sources of trace atmospheric constituents carbon oxides				
20		Sources of trace atmospheric constituents chlorofluoro carbon and other halogen compound				
21		Tropospheric photochemistry				
22		Mechanism of photochemical decomposition of NO and formation of ozone				
23		Formation of Oxygen atoms, hydroxyl, hydropropoxy,organic radical and hydrogen peroxide				
24		Reaction of hydroxyl radical with SO2 and NO				
25		Formation of nitrate radical and its reaction				
26		Photochemical smog meteorological condition and chemistry of its formation				
27	Unit 2	Air pollotion and there classification				
28		Aerosols -sources, size and distribution and effects on visibility, Climate and health				
29		Aerosols -sources, size and distribution and effects on visibility, Climate and health				
30		Acid rain defition, formation of acid rain, effects of acid rain, reaction of acid rain				
31		Acid rain defition, formation of acid rain, effects of acid rain, reaction of acid rain				
32		Stratospheric ozone depletion				
33		Mechanism of ozone formation				
34		Mechanism of catalytic ozone depletion				
35		Discovery of Antarctic ozone hole and role of chemistry and meteorology				
36		Control strategies				
37		Green House effect, terrestrial and solar radiation spectra				
38		Major green house gases and their sources and Global warming potentials				
39		Climate change and consequences				
40		Urban Air pollution, Exhaust emission, damazing effect, monitoring of CO				
41		Control strategies				

10		
42	Unit 3	Aquatic chemistry and water pollution, redox chemistry in natural water
43		Dissolve oxygen, determination of dissolve oxygen(DO)
44		Biochemical oxygen demand, determination of biological oxygen demand(BOD)
45		Chemical oxygen demand, determination of chemical oxygen demand (COD)
46		Aerobic and anaerobic reaction of organic sulphur and nitrogen compound in water
47		Acid-base chemistry of freshwater and sea water
48		Aluminium nitrate and fluorides in water, petrification
49		Sourcesof water pollution, treatment of waste and sewage water
50		Purification of drinking water, techniquesof purification and disinfection
51	Unit 4	Environmental toxicology, toxic heavy metals
52		Toxic heavy metals mercury
53		Toxic heavy metals lead, Arsenic
54		Toxic heavy metals Cadmium
55		Causes of toxicity
56		Bioaccumulation
57		Sources of heavy metals
58		Chemical speciation of Hg
59		Chemical speciation of Pb
60		Chemical speciation of As
61		Chemical speciation of Cd
62		Biochemical and damaging effect
63		Toxic organic compound, pesticides
64		Classification of pesticides
65		Properties and uses of organoChlorine and ionospheres pesticide
66		detection and damaging effects of organoChlorine and ionospheres pesticide
67		Polychlorinated biphenyls- properties, uses and environmental continuation and effects
68		Polynuclear aromatic hydrocarbons-sources, structures and as pollutants
69	Unit 5	Soil and environmental disasters, Soil composition
70		Micro and macro nutrients
71		Soil pollution by fertilizers, plastic and metals
72		Methods of re-mediation of Soil
73		Bhopal gas tragrdy
74		Chemobyl disaster
75		Three mile island disaster
76		Minimata disease
77		Sevoso (Italy) disaster
78		London Smog

	Maharaja Ranjit Singh College of Professional Sciences, Indore				
		Department of Chemical Sciences			
		Lesson Plan - M. Sc. III Sem. (July 2018 - Dec 2018)			
		Subject - Inorganic Chemistry Practical			
		Teacher - Prof. Seema Shintre			
Day/Lecture	Day/Lecture Unit Topic				
		Quantitative determination of 3 component mixture: 1 volumetrically & 2 gravimatrically			
1	а	Cu2+, Ni2+, Zn2+			
2		Cu2+, Ni2+, Zn2+			
3	b	Ag+, Ni2+, Mg2+			
4		Ag+, Ni2+, Mg2+			
		Chromatographic seperations and determination of Rf values:			
5		Paper chromatography: Group II metal ions			
6		Paper chromatography: Cu2+, Fe2+, Ni2+ & Co2+			
7		Thin layer chromatography: Ink pigment(black)			
8		Thin layer chromatography: Ink pigment(blue and Red)			
9		Column chromatography: indicators			

Maharaja F	Maharaja Ranjit Singh College of Professional Sciences, Indore							
	Department of Chemical Sciences							
	Lesson Plan - M. Sc. III Sem. (July 2018 - Dec 2018)							
	Subject - Organic Chemistry Practical							
			Teacher - Dr. Lal Kumar					
	Day/Lecture	Unit	Торіс					
	1	Ι	Multi Step Synthesis					
	2	Ι	To prepare and submit p-nitroaniline from aniline					
	3	Ι	To prepare and submit p-bromoaniline from aniline					
	4	Ι	To prepare and submit Anthranilic acid from phthalic acid					
	5	Ι	To prepare and submit benzopincolone from benzophenone					
	6	Ι	To prepare and submit Bezoin from bezilic acid					
	7	Ι	To prepare and submit Benzidine from hydrazobenzene					
	8	II	Quantitative Estimation (Titrimetric Method)					
	9	Π	To estimate glucose by Titrimetric Method					
	10	II	To estimate glycine by Titrimetric Method					
	11	II	To estimate Vitamin C tablet by Titrimetric Method					
	12	Π	To determine DO from the given sample					
	13 II To determine COD from the given sample							
	14	II	To determine BOD from the given sample					

Maharaja Ranjit Singh College of Professional Sciences, Indore Department of Chemical Sciences Lesson Plan - M. Sc. III Sem. (July 2018 - Dec 2018)

Subject - Physical Chemistry III Teacher - Prof. Deepanshu Pandey

Day/Lecture	Unit	Торіс
1	Sec A	Spectroscopy :
2	Sec A	Interpretation of IR,NMR spectra
3	Sec A	Numerical problems on UV,IR & NMR
4	Sec A	Spectrophotometry/Calorimetry :
5	Sec A	Determination of the composition of a mixture of K2Cr2O7 & KMnO4 (mixture law)
6	Sec A	Determination of phosphate concentration in soft drink
7	Sec A	Titration of Mohr's salt with K2Cr2O7 / KMnO4 solution
8	Sec A	Determination of order & energy of activation for the decomposition of violet colour complex formed between complex formed.
9	Sec A	Chemical Kinetics:
10	Sec A	Determination of kinetics of decomposition of complex formed between sodium sulphide & sodium nitroprusside spectrophotometrically.
11	Sec A	Investigate the reaction between acetone & iodine.
12	Sec B	Electronics :
13	Sec B	Study the charge & discharge of a capacitor through a resistor.
14	Sec B	Verification of Kirchoff's current law & Kirchoff's voltage law
15	Sec B	Conductometry :
16	Sec B	Determination of equilivalent conductance of a weak electrolyte at different concentration and hence the dissociation constant of the electrolyte.
17	Sec B	Determination of equivalent conductance of a weak electrolyte at infinite dilution using Kohlrausch law.
18	Sec B	pH metry :
19	Sec B	Determination of acidic and basic dissociation constant of an amino acid and isoelectric point of the acid.
20	Sec B	Measurement of the pH of buffer solution (CH3COOH + CH3COONa) using Henderson's equation & hence Pka.

Maharaja Ranjit Singh College of Professional Sciences, Indore					
		Department of Chemical Sciences			
		Lesson Plan - M. Sc. IV Sem. (Jan 2019 - Jun 2019)			
		Subject - Application of Spectroscopy - II			
		Teacher - Prof. Deepanshu Pandey			
Day/Lecture	Dav/Lecture Unit Topic				
1	Unit -1	Ultraviolet and Visible spectroscopy :			
2	Unit -1	various electronic transition (185 - 800 nm)			
3	Unit -1	Beer-lambert law, Effect of solvent on electronic transition			
4	Unit -1	ultraviolet bands for carbonyl compounds			
5	Unit -1	ultravilet bands for unsaturated carbonyl compounds			
6	Unit -1	ultravilet bands for dienes			
7	Unit -1	ultravilet bands for conjugated polyenes,			
8	Unit -1	Fisher- Woodward rule for conjugated dienes			
9	Unit -1	Fisher- Woodward rule carbonyls compounds			
10	Unit -1	ultraviolet spectra of aromatic compounds			
11	Unit -1	Steric effect in biphenyls			
12	Unit -1	Revision after the completion of unit			
13	Unit -2	Infrared Spectroscopy :			
14	Unit -2	Characteristic vibrational frequencies of alkanes			
15	Unit -2	Characteristic vibrational frequencies of alkenes, alkynes			
16	Unit -2	Characteristic vibrational frequencies of aromatic compounds, alcohol			
17	Unit -2	Characteristic vibrational frequencies of ethers, amides			
18	Unit -2	Characteristic vibrational frequencies of acid anhydrides			
19	Unit -2	Characteristic vibrational frequencies of lactones, lactams			
20	Unit -2	Characteristic vibrational frequencies of conjugated carbonyl			
21	Unit -2	effect of hydrogen bonding and solvent effect on vibrational frequencies			
22	Unit -2	overtones, combination bands and fermi resonance			
23	Unit -2	Revision after the completion of unit			
24	Unit- 3	Nuclear Magnetic Resonance Of Paramagnetic Substances in Solution :			
25	Unit- 3	The contact and Pseudo contact shifts			
26	Unit- 3	Factor affecting nuclear relaxation			
27	Unit- 3	some applications including biochemical systems			
28	Unit- 3	some applications including biochemical systems			
29	Unit- 3	an overview of NMR of metal nuclides with emphasis on 195 Pt and 119 Sn NMR			
30	Unit-3	Revision after the completion of unit			

31	Unit- 4	Carbon- 13 NMR Spectroscopy :
32	Unit- 4	General Considerations, Chemical Shift (aliphatic olefinic)
33	Unit- 4	Chemical Shift (alkyne, aromatic heteroaromatic and carbonyl compounds)
34	Unit- 4	Coupling constants
35	Unit- 4	Two dimension NMR spectroscopy ,COSY , NOESY
36	Unit- 4	Two dimension NMR spectroscopy, COSY, NOESY
37	Unit- 4	DEPT, HMBC & HMQC technique
38	Unit- 4	DEPT, HMBC & HMQC technique
39	Unit- 4	DEPT, HMBC & HMQC technique
40	Unit- 4	Revision after the completion of unit
41	Unit - 5	Mass Spectroscopy :
42	Unit - 5	Introduction ion production E1, C1
43	Unit - 5	FD,ESI & FAB
44	Unit - 5	Factors affecting fragmentation
45	Unit - 5	ion analysis, ion abundance mass spectral
46	Unit - 5	Fragmentation of organic compounds common functional group
47	Unit - 5	molecular ion peak
48	Unit - 5	metastable peak, mclafferty rearrangement
49	Unit - 5	Nitrogen rule, High resolution mass spectrometry
50	Unit - 5	Example of mass spectral fragmentation of organic compounds with respect to their structure determination
51	Unit - 5	Example of mass spectral fragmentation of organic compounds with respect to their structure determination
52	Unit - 5	Revision after the completion of unit

		Maharaja Ranjit Singh College of Professional Sciences, Indore			
Department of Chemical Sciences					
		Lesson Plan - M. Sc. IV (Jan 2019 - Jun 2019)			
		Subject - Analytical Chemistry			
		Teacher - Dr. Dipak Sharma			
Day/Lecture	Unit	Торіс			
1	1	Introduction: Role of analytical chemistry, Classification of analytical methods, classical and instrumental			
2		Types of instrumental analysis, Selecting an analytical method, Neatness and cleanliness			
3		Laboratory operations and practices, Analytical balance, techniques of weighing, errors			
4		Volumetric glassware cleaning and calibration of glassware			
5		Sample preparation-dissolution and decompositions			
6		Gravimetric techniques, selecting and handling of reagents.			
7		Laboratory notebooks. Safety in the analytical laboratory, Errors and Evaluation: Definition of terms in mean and median.			
8		Precision-standard deviation, Relative standared deviation.			
9		Accuracy-absolute error, relative error. Types of error in experimental data determinate			
10		(systematic), indeterminate (random) and gross			
10		Sources of error and the effects upon the analytical results.			
11		Statistical evaluation of data indeterminate arrays. The uses of statistic			
12	2	East Analysis Maisture, ash			
13	2	Crude protein			
14		Ende protein,			
15		Caloium potessium			
10		Sodium phosphate			
17		Food adulteration_common adulteration in food_contamination in food stuff			
10		Microscopic examination of foods for adulterants			
20		Pesticide analysis in food products			
20		Extraction and purification of sampale			
22		HPI C			
23		Gas chromatography for organophosphates			
24		Thin layer chromatography for identification of chlorinated pesticides in food products			

25	3	Analysis of water pollution
26		Origine of waste water, types, water pollutants and their effects
27		Sources of water pollution-domestic, industrial, agricultural, soil and radioactive wastes as
27		sources of pollution
28		Objectives of analysis-parameter for analysis-colour, turbidity
29		Total solids, conductivity, acidity
30		Alakalinity, hardness
31		Chloride, sulphate, fluoride
32		Silica, phosphates and dirrerent forms of nitrogen
33		Heavy metal pollution-public health significance of Cd, Cu, Pb, Zn, Mg, Hg, arsenic
34		General survey of instrumental technique for the analysis of heavy metals in aqueous system
35		Measurements of DO, BOD, COD
36		Pesticides as water pollutants and analysis. Water pollution laws and standards
37	4	Analysis of soil, fuel, body fluids and drugs
38		Analysis of soil, moisture, pH
39		Total nitrogen, phosphorus
40		Silica, lime
41		Magnesia, manganese
42		Sulphur, alkali salts
43		Fuel analysis: liguid and gas
44		Ultimate and proximate analysis
45		heating values, grading of coal
46		Liquide fuels-flash point, aniline point
47		Octane number, carbon residue
48		Gaseous fuels, produced gas and water gas, calorific value
49	5	Clinical chemistry: Composition of blood, collection and preservation of samples
50		Clinical analysis. Serum electrolytes, blood glucose
51		Blood urea nitrogen, uric acid
52		Albumin, globulins, barbiturates

Ν	Maharaja Ranjit Singh College of Professional Sciences, Indore			
		Department of Chemical Sciences		
		Lesson Plan - M. Sc. IV Sem. (Jan 2019 - Jun 2019)		
		Subject - Biochemistry		
		Teacher - Prof Seema Shintre		
Dav/Lecture	Unit	Tonic		
Day/Lecture	1	Metal ions in biological system		
1	1	Bulk and trace metals with special referance to Na K Mg		
2		Bulk and trace metals with special reference to Ca. Fe. Cu.Zn		
3		K+/Na+ pump		
		Bioenergetics and ATP Cycles		
4		DNA polymerisation		
5		Glucose storage		
6		Metal complexes in transmission of energy; chlorophyll's		
7		Photosystem I and Photosystem II in cleavage of water		
		Transport and storage of dioxygen		
8		Heam proteins and oxygen uptake structure and function of Heamoglobin's		
9		Myoglobin, Heamocyanms and Hemerythrin		
10		Model synthetic complexes of iron, cobalt and copper		
	2	Electron transfer in biology		
11		Structure and function of metal of proteins in electron transport process		
12		cytochrome's and iron-sulphur proteins		
13		Synthetic models		
		Nitrogen Fixation		
14		Biological nitrogen fixation and its mechanism		
15		nitrogenase, chemical nitrogen fixation		
	3	Enzymes		
16		Introduction and historical perspective, chemical and biological catalysis		
17		Remarkable properties of enzmes like catalytic power, specificity and regulation		
18		Nomenclature and classification		
19		Extraction and purification		
20		Fischer's lock and key model and Koshaland's induced fit hypothesis		
21		concept and identification by site directed mutagenesis		
22		Enzyme kinetics, Michael's-Menten equation and lineweaver burk plots		
23		Reversible and irreversible inhibition		
		Mechanism of enzyme action		
24		Transition state theory		
25		Orientation and Steric effect		
26		Acid-base catalysis, covalent catalysis		
27		Strain or distortion		
28		Enzyme mechanisms for chemotrypsin, Ribonuclease		
29		Enzyme mechanisms for lysozyme and carboxypeptidase		
		Kinds of reactions catalysed by enzymes		
30		Nucleophilic displacement on a phosphorus atom, multiple displacement reactions		
31		Couplingot ATP cleavage to endergonic processes		
32		Transfer of sulphate, addition and elimination reactions		
33		Enolic intermediates in isomerisations reactions		
34		b-cleavage and codensation		
35		some isomerization and rearrangement reactions		

36		Enzyme catalyzed carboxylation and decarboxylation
	-	·

	4	Co- enzyme chemistry
37		Cofactors as derived from vitamines, coenzyme, prosthetic groups, apoenzymes
38		structure and biological functions of coenzymes A, thiamine pyrophosphate
39		pyridoxal phosphate, NAD+, NADP+, FMN, FAD
40		Lipoic acid and vitamin B12
41		Mechanism of reactions catalyzed by the above cofactors
		Enzyme models
42		Host -guest chemistry, chiral recognition and catalysis
50		Clinical uses of enzymes, enzyme therapy, recombinant DNA technology
	5	Biological cell and its constituents
51		Biological cells, structure and function of protein, enzymes
52		DNA and RNA in living systems
53		Helix coils transition
		Bioenergetics
54		Standard free energy change in biochemical reactions, exergonic and endergonic
55		Hydrolysis of ATP, synthesis of ATP from ADP
		Biopolymer interactions
56		Forces involved in biopolymer interactions, electrostatic charges and molecular
50		expansion
57		hydrophobic forces, dispersion force interactions
58		Multiple equilibrium and various types of binding processes in biological systems
59		Hydrogen ion titration curves.
		Cell membrane and transport of ions
60		Structure and function of cell membrane
61		ion transport through cell membrane
62		irreversible thermodynamic treatment of membrane transport
63		Nerve conduction

Mał	naraja	Ranjit Singh College of Professional Sciences, Indore
	Ū	Department of Chemical Sciences
	Ι	Lesson Plan - M. Sc. IV Sem. (Jan 2019 - Jun 2019)
		Subject - Solid State Chemistry
		Teacher - Dr. Lal Kumar
Dav/Lecture	Unit	
1	I	Solid State Reactions
2	I	General Principle
3	Ι	Experimental Procedure
4	Ι	Coprecipitation as a precursor to solid state reactions
5	Ι	Kinetics of solid state reactions
6	II	Crystal Defects and Non-Stoichiometry
7	II	Perfect and imperfect crystals
8	II	Interinsic and extrinsic defectrs
9	Π	Point Defects
10	II	Line Defects and plane defects
11	II	Vacancies Schottky Defects and Frenkel Defects
12	II	Thermodynamics of Schottky and Frenkel Defect formation
13	Π	Colour centres
14	Π	non-stoichiometry and defects
15	III	Electronic Properties and Band Theory
16	III	Metal Insulators and semiconductors
17	III	Electronic structure of solids band theory
18	III	Band structure of metals insulators and semiconductors
19	III	Interinsic and extrinsic semiconductors
20	III	Dopping semiconductors
21	III	p-n-junctions
22	III	Supperconductors
23	III	Optical Properties
24	III	Application of optical and electron microscopy
25	III	Magnetic properties
26		Classification of materials, effect of temparature
27		Calculation of magnetic moment
28		mechanism of ferro and antiferromagnetic
29		odering super exchange
30		Urganic Solids
31		Electrically conducting solid
32		organic charge transfer complex
33		New superconductors
25	IV V	Liquid Crystals
35	V V	Type of Liquid crystals
30	v V	Nematic Smeetic
38	V	Ferroelectric
39	V	Antiferroelectric
40	V	Various theories of liquid crystals
41	V	Liquid crystals display (LCD)
42	V	New Materials

		Lesson Plan M Sa III Sam Chamistry (Jan 2010, Jun 2010)	
		Lesson r an - M.Se. In Sent Chemistry (Jan 2019 - Jun 2019) Subject Medicinal Chemistry	
		Subject - Medicinal Chemistry	
Day/Lecture	Unit	Topic	
Day/Lecture	Unit 1	Structure and activity, relationship between chemical structure and biological activity (SAD)	
2	Unit 1	Structure and activity relationship between chemical structure and biological activity (SAR)	
3	Unit 1	Becentor site theory	
4	Unit 1	Approaches to drug design	
5	Unit 1	Approaches to drug design	
6	Unit 1	Introduction to combinatorial synthesis in drug design	
7	Unit 1	Introduction to combinatorial synthesis in drug design	
8	Unit 1	Factor affecting bioactivity	
9	Unit 1	OSAR- Free Wilson analysis	
10	Unit 1	Hansch analysis	
11	Unit 1	Relationship between free Wilson analysis and Hansch analysis	
12	Unit 2	Pharmacodynamics-introduction	
13	Unit 2	Elementary treatment of enzymes stimulation	
14	Unit 2	Elementary treatment of enzymes stimulation	
15	Unit 2	Enzymes inhibition	
16	Unit 2	Sulphonamides-introduction structure properties	
17	Unit 2	Synthesis of sulphonamides drugs	
18	Unit 2	Membrane active drugs	
19	Unit 2	Drug metabolism	
20	Unit 2	Xenobiotics	
21	Unit 2	Biotransformation	
22	Unit 2	Significance of drug metabolism in medicinal chemistry	
23	Unit 2	Significance of drug metabolism in medicinal chemistry	
24	Unit 3	Antibiotics and antibacterials drugs introduction	
25	Unit 3	Antibiotic Lacam type- penicillins	
26	Unit 3	Antibiotic Lacam type- penicillins	
27	Unit 3	Antibiotic Lacam type- cephalosporins	
28	Unit 3	Antibiotic Lacam type- cephalosporins	
29	Unit 3	Anti-tubercular drugs	
30	Unit 3	Anti-tubercular drugs	
31	Unit 3	Streptomycin	_
32	Unit 3	Streptomycin	
33	Unit 3	Broad spectrum antibiotics tetracyclines	
34	Unit 3	Broad spectrum antibiotics tetracyclines	
35	Unit 3	Anticancer-Dactinomycin(AntinomycinD)	
36	Unit 3	Anticancer-Dactinomycin(AntinomycinD)	

37	Unit 4	Antifungal drugs introduction
38	Unit 4	Polyenes
39	Unit 4	Antibacterial ciprofloxacin
40	Unit 4	Antibacterial ciprofloxacin
41	Unit 4	Antibacterial Norfloxacin
42	Unit 4	Antibacterial Norfloxacin
43	Unit 4	Antiviral
44	Unit 4	Acyclovir
45	Unit 4	Antimalaria drugs
46	Unit 4	Chemotherapy of malaria
47	Unit 4	SAR
48	Unit 4	Chloroquine
49	Unit 4	Chloroguanide
50	Unit 4	Mefloquin
51	Unit 5	Non-sterodial anti-inflammatory drugs
52	Unit 5	Diclofenac sodium
61	Unit 5	Cinnarizine
62	Unit 5	
63	Unit 5	Salbutamol
64	Unit 5	Salbutamol
65	Unit 5	Beclomethasone dipropionate
66	Unit 5	Beclomethasone dipropionate

Maharaja Ranjit Singh College of Professional Sciences, Indore						
Department of Chemical Sciences						
Lesson Plan - M. Sc. IV Sem. (Jan 2019 - Jun 2019)						
	Subject - Inorganic Chemistry Practical					
Teacher - Prof. Seema Shintre						
Day/Lecture	Unit	Торіс				
		Preparation: to prepare the following				
1	1	Synthesis of metal acetylacetonate				
2	2	Metal complex of DMSO				
3	3	Determination of Cr(III) complex				
4	4	[Co(NH3)5(NO2)]Cl				
5	5	Synthesis of metal- ethylene diamine complex				
6	6	[Co(NH3)5Cl]Cl2				
		Ion Exchange Chromatography				
7	1	Capacity of cation /anion exchange resin				
8	2	Separation of cobalt and nickel on anion exchange resin & their estimation volumetrically				
		Spectrophotometric Determinations/ Spectroscopic identification of recorded spectra				
		like IR, NMR, ESR & Mass				
9	1	Manganese/ Chromium in steel sample				
10	2	Nickel by extractive spectrophotometric method				
11	3	Flouride/ Nitrite/ Phosphate				
		Flame photometric determination				
12	1	Sodium & Potassium when present together				
13	2	Lithium / Calcium/ Barium/ Strontium				

Maharaja Ranjit Singh College of Professional Sciences, Indore					
Department of Chemical Sciences					
Lesson Plan - M. Sc. IV Sem. (Jan 2019 - Jun 2019)					
Subject - Organic Chemistry Practical					
Teacher - Dr. Lal Kumar					
Day/Lecture	Unit	Торіс			
1	Ι	To prepare and submit soap from fat or oil			
2	Ι	To isolate Caffiene from tea leaves			
3	Ι	To isolate Casiene from milk			
4	Ι	To isolate Lactose from milk			
5	Ι	To isolate Lycopine from Tomatos			
6	Ι	To prepare and submit Rose water using steame distillation from rose petals			
7	Ι	Multi Step Synthesis			
8	Ι	To prepare and submit benzanilide from benzophenone oxime			
9	Ι	To estimate Glucose quantitatively by the spectroscopic method or colorimeter			
10	Ι	To identified organic compound by the analysis of their IR spectra (Phenol)			
11		To identified organic compound by the analysis of their IR spectra (Toluene)			
12		To identified organic compound by the analysis of their IR spectra (Aniline)			

Maharaja Ranjit Singh College of Professional Sciences, Indore						
Department of Chemical Sciences						
Lesson Plan - M. Sc. IV Sem. (Jan 2019 - Jun 2019)						
	Subject - Physical Chemistry Practical					
Teacher - Prof. Deepanshu Pandev						
Day/Lecture	Unit	Торіс				
1	Sec A	Spectroscopy :				
2		Determination of pKa of an indicator in aqueous & micellar media				
3		Determination of stoichiometry & stability constant of Ferric isothiocyanate ion complex in solution				
4		Determination of rate constant of alkaline bleaching of Malachite green & effect of ionic strength on the rate of reaction				
5		Polarography / Electronics :				
6		ndentification & estimation of metal ions such as Cu2+, P02+, Zn2+ & N12+ etc				
7		Study of a metal ligand complex polarographically Using lingane's method				
8		Determination of the V-I characteristic of a given diodes in :				
9		(a) Forward based mode / function				
10		(b) Reverse based mode / function				
11		Chemical Kinetics :				
12		Determination of rate constant & formation of an intermediate complex in the reaction of				
12		Ce(IV) & hypophosphorus acid at ambient temperature				
13		alcohol in acid medium				
14		Determination of energy of activation & entropy of activation from single kinetic run				
15		Kinetics of an enzyme catalysed reaction				
16		Thermodynamics :				
17		Determination of partial molar volume of solute & solvent in a binary mixture.				
18		Determination of temperature dependence of the solubility of a compound in two solvents				
		having similar intramolecular interaction				
19		calculate the partial molar heat of solution				